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ABSTRACT

Many important Fredhoim integra l equations have separable kernel s,

which are finite rank modifications of Volterra kernels. This class of kernel s

includes Green ’s functions for Sturm-Liouvi lle and other two-point boundary

value problems for linear ord i nary differential operators. It is shown how to

construct the Fredhoim determinant , resolvent kernel , and eigenfunctions of

kernel s of this class by solving related Vol terra integral equations and finite

linear al gebraic systems. Applications to boundary value problems are discussed,

and explicit formulas are given for a simple example. Analytic and numerical

approximation procedures for more general problems are indicated .
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RESOLVENT KERNELS OF GREEN’S FUNCTION KERNELS AND OTHER

F I N ITE RANK MODIFI CATIO NS OF FRE DHOLM AND VOLTERRA KERNELS

L. B. Ra ll

1. A classical problem in the theory of integral equations. The equation

(1.1) y(x) - Af K(x,t)y(t)dt = f(x) , 0 ~ x 1

for the unknown function y(x) is called a linear integral equation of

second kind. Equations of this form arise in the solution of initial and

boundary value problems for ordi nary differential equations and in other areas

of applied analysis. In (1.1), the function f(x), the kernel K(x,t), and

the parameter ~ are assumed to be given . In case K(x,t) = 0 for t > x,

equation (1.1) is said to be of Vol terra type, and the interval of integration

is actually 0 - t ~ x ; otherwise, (1.1) is called an integral equation of

Fredholm type.

A central probl em in the classical theory of linear integral equations

of second kind is to determine the values of A for which the solution y(x)

of (1.1) exists and is unique , and to express this solution in the form

(1.2) y(x) = f(x) + A f R(x,t;A)f(t)dt , 0 ~ x ~ 1

where R( x,t;A ) is called the resolvent kernel of K(x,t) [12). The investi-

gation of the unique solvability of equation (1.1) can thus be reduced to the

problem of existence and construction of R(x,t;A )

Using operator notation, the kernel K(x ,t) may be taken to define the

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.



linea r integra l operator K on the space of functions considered. If I de-

notes the identity operator, then (1.1) can be written in the form

(1.3) (I — AK))’ = f

The solution y of (1.3) exists and is unique if the operator I - AK is

invertible for the given value of A . To obtain the expression corresponding

to (1.2), the inverse of I - AK 15 represented in the form

(1.4) (I - AK) 1 
= I + AR(A )

where the resolvent operator R(x) of K is the linear integral operator with

kernel R(x,t;A ) . Equation (1.4) leads directly to the relationships

( R()~) = K + AKR(A )
(1.5) (

R(x) = K + AR(A )K

by the defini tion of the inverse operator. These are the so-called resolvent

equations. In terms of the corresponding kernels, equations (1.5) become

I R(x,t;x) = K(x,t) + Af K(x,s)R(s ,t;x)ds
(1.6) 0

L R(x ,t;x) = K(x,t) + Af

(If K(x,t) is a Volterra kernel , then the intervals of integration in (1.6)

reduce to t ~ s < x

In the classical setting of the theory of Integra l equations , one is

concerned wi th kernels which are bounded and at least square-integrable. The

representation (1.4) allows one to eliminate the identity operator and obtain

relationships (1.5) between linear integral operators with kernels (1.6) of

this type. This simplifie s the analysis considerably, as the identity operator
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cannot be represented as a linear integral operator wi th a bounded kernel

on the spaces of continuous or square-integrable functions [6, 8, 16)
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2. Volterra resolvent kernels. In case that K(x,t) is a Volterra kernel ,

(1.1) takes the form

x
(2.1) y(x) - Af K(x,t)y(t)dt = f(x) , 0 ~ x ~ 10

It is well-known [8, 11 , 12, 16) that the resolvent kernel R(x,t;A ) of

K(x ,t) always exists under the assumptions of the classica l theory, and is

given by the Neumann series

(2.2) R(x,t;A ) = ~ A~~
1K~~ (X ,t) , O~ t ~ x ~ 1n= 1

where

K~~~(x,t) K (x,t)

(2.3) K~~~
’
~~~(X ,t) = f K(X,S)K(n) (S,~)dS = f

x 
K(n) (X ,S)K(5,~)dS

n = 1 , 2 

The convergence of (2.2) for all A with finite modulus is easy to establish

by mathematical induction for bounded kernels K(x,t) . If K(x,t)I ~

O ~ t ~ x ~ 1 , then

(2.4) IK (n) (x,t)$ ~ N • 
_ M’~ , n 1,2,
(n-l)!

from which the desired result follows. The kernels K~
2
~(x ,t), ~~~~~~~~~

are sometimes called the Iterated kernels of K(x,t) [7]

It will be useful later to consider also the transposed Volterra Integral

equation corresponding to (2.1),

1

(2.5) z(t) — xJ z(x)K(x,t)dx g( t) , 0 ~ t ~ 1t

-4-



The solution z(t) of (2.5) is given in terms of g(t) and the resolvent

kernel R(x,t;A ) of K(x,t) as

(2.6) z(t) = g(t) + xf g(x)R(x,t;A)dx , 0 ~ t~ 1
t

-5—
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3. Fredholm resolvent kernels. For the more general case of a Fredhoim

kernel K(x,t), an expression for the resolvent kernel is sought in the form

(3.1) R(x ,t;A ) = ~kx,t;A )

with the numerator and denominator having series expansions

(3.2) N(x,t;A ) = 

n~l 
A n 1 K(X t)

and

(3.3) t~(x) 
= 1 + 

n~l 
~~~~~

respectively, which converge for all A with finite modulus. The resolvent

kernel R(x,t;A) will then exist for all values of for which the

Fredholm determinant t~(A) of K(x,t) does not vanish. This is analogous

to Cramer’s rul e for the inversion of a finite-dimensiona l matrix.

Formulas for the so-called associated kernels K1 (x,t), K2(x,t),

of K(x,t) [7) appearing in (3.2) may be obtained by substituting (3.1) -

(3.3) into the resolvent equations (1.6). This gives

K1 (x,t) = K(x,t)

(3.4) K~~1 (x ,t) = CnK (X~
t) + f K(x

~
S)Kn(S~

t)dS =

1
= c~K(x 1t) + f K~(x ,s)K(s,t)dS~ n = 1 ,2,...,

0

a result which satisfies (1.6) formally, independently of the va lues assigned

to c1. c2 For examp le, If C1 
= C

2 
= = 0, then (3.2) becomes

-6-
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the Neumann series (2.2), which does not converge in general for I A I

large . In order for (3.2) and (3.3) to be entire functions of x , one

chooses

(3.5) C
n 

= - tr K~ = - 

~ 
I K~(x~x)dx , n = 1,2,...

where the quantity tr K~ is called the trace of the kernel K~(x~t) . The

construction (3.4) - (3.5) of the resol vent kernel is in the form given by

Lalesco [11]. Fredholm [5) originally obtained the formulas

K(s ,t) K(x ,s1 ) K(X
~
Sn_ l )

(3.6) K~(x~t) = f . .  .f K(s~,t) K (s 1,s1 ) K(s1~s~~1 ) ~ds1~~~ds~~1

K(s~~1,t) K(Sn 1~
S1 )•••K (5n i ~

Sn i )I

and the similar expressions corresponding to (3.5) for c~, n 
= 1 ,2 

The satisfaction of (3.4) is easily verified by mathematica l induction.

Using Fredholm ’s formulas , the convergence of the series (3.2) and

(3.3) can be established on the basis of Hadamard ’s inequality for determinants

(see [16) for an elegant proof) and the ratio test. If K(x,t)t ~ M, then

Hadamard ’s inequality applied to (3.6) yields the estimates

n
~n-l 2(3.7) K~(x,tfl ~ M 
ii n 

, n = 1 ,2,...
(n—l)!

and similar bounds for 1c 1 t , jc2f The rate of convergence which can

be predicted for the series (3.2) and (3.3) on the basis of (3.7) is , of

course, much slower than that given by the estimates (2.4) applied to the

— 7—
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Neumann series expansion (2.2) of a Volterra resolvent kernel. For example ,

if given Volterra and Fredholni kernels are bounded in absolute value by M

then for n = 100, the right-hand side of (3.7) exceeds that of (2.4) by

a factor of 10100 . From a computational point of view , the relationships

(3.4) - (3.5 ) would appear to be preferable to the equiva lent expressions

(3.6) involving determinants. It has been observed , however, that the for-

mulas corresponding to (3.4) - (3.5) for finite-dimensional matrices are

unstable numerically [4] .

Other important relationships which follow from the fo rmulation (3.1)

of the resolvent kernel and the resol vent equations (1.6) are

I N(x,t;~) = L~(A)K (x,t) + Af K(x,s)N(s,t;A)ds
0

(3.8)

L N(x ,t;A) = 

~(A)K(x ,t) + ~J

These are innediately evident for ~
(
~

) 
~~ 

0 . In the framework of the

classical theory, they can also be extended to the case that ~ 
= X~~ 

j 5

an eigenval~e of the kernel K(x ,t); that is , ~(x *) = 0 . Assuming that

N (x,t;x*) does not vanish identically, a point ~~~ in the square

O ~ x,t ~ 1 exists such that the functions

,- * *y (x) = N(x , t ;A ), 0 ~ x ~ 1(3.9)
1. z~ Ct ) = N(~ ,t;A *), 0 ~ t ~ 1

are also not identically zero. Furthermore, y*(x) satisfies the homo-

geneous integral equation

-8-



(3.10) y*(x) x*f K(x,t)y*(t)dt , 0 ~ x ~ 1

and is said to be a (rjght) eigenfunction of K(x,t) corresponding to

the eigenva l ue A~ . Similarly, the function z*(t) satisfies the

transposed homogeneous integral equation

(3.11) z*(t) A*J z*(x)K(x,t)dx , 0 ~ t ~ 1

and is called a left eigenfunction of K(x,t) corresponding to A*

-9-
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4. Symmetric~~~p~~~ble kernels. Attention will now be devoted to the

construction of resolvent kernels of a special class of Fredhoim kernels.

In the synirietric case, a kernel of the form

~ 
u(t)v(x), 0 ~ t � x ~ 1 ,

(4.1) G(x,t) =

u(x)v(t), 0 ~ x ~ t ~ 1

will be called a simple separable kernel. It is assumed that the functions

u(x) and v (x) are linearly independent; otherwise , G (x,t) would be a

degenerate kernel of rank one [8, pp. 37-40). In general , a symmetric

separable kernel is a finite sum of linearly independent kernels (4.1)

Before dealing with the genera l case, the resolverit kernel of the

symmetric simple separable kernel (4.1) will be constructed. To do this ,

the Fredholm integra l equation

(4.2) y(x) — A f G(x,t)y(t)dt = f(x), 0 ~ x ~ 10

will be solved. This is essentially the approach used by Drukarev [3],

Brysk [2], and Aalto [1]. Using the definition (4.1) of G(x,t), equation

(4.2) may be written as

x 1
(4.3) y(x) - Af u(t)v(x)y(t)dt = f(x) + AJ u(x)v(t)y(t)dt

0 x

x
Adding the quantity Af u(x)v(t)y(t)dt to both sides of (4.3) gives

x
(4.4) y(x) - ~f K(x,t)y(t)dL = f(x) + Acu(x)

where

-10-
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(4.5) c = 5 v(t)y(t)dt
0

is to be detirmined , and K (x,t) is the Volterra kernel

(4.6) K(x,t) = u(t)v(x) - u(x)v(t), 0 ~ t ~ x ~ 1

The system of equations (4.4) - (4.5) is easily seen to be equivalent to

the origina l integral equation (4.2).

As was shown in ~2, the kernel K(x,t) has the Vol terra resolvent

kernel R(x ,t;A ) given by (2.2) for all x . Define

F(x) = f(x) + Af R(x,t;x)f(t)dt

(4.7)
x

U(x) = u(x) + xf R(x,t;A)u(t)dt
0

where the dependence of F(x) and U(x) on A has been suppressed for

clari ty of notation. From (4.4),

(4.8) y(x) = F(x) + ACU(x)

and from (4.5) 

1
(4.9) c = f v(t)F(t)dt + Ac f v(t)U(t)dt

0 0

Thus , (4.9) has a unique solution for c if

1
(4.10) t\ (x) 1 — Af v(t)U(t)dt ~‘ 0 ,

0

in which case

-11-
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1
(4.11) c = ~~~ I v(t)F(t)dt

The expression (4.11) for c may be written in terms of f(t) by intro-

ducing the function

I
(4.12) V(t) = v(t) + Af v(x)R (x,t;A)dx

t

It then follows from (4.7) and (4.11) that

1
(4.13) c = ~~~ S V(t)f(t)dt

A (A ) 0

and , from (4.8),

x 1
(4.14) y(x) = f(x) + Af R(x,t;A)f(t)dt + 

AU(x) j V(t)f(t)dt
0 ~(A) o

By definition , the resolvent kernel r(x,t;A) of G(x,t) can be obtained

directly from (4.14) as

I R(x,t;A ) + U(x)V(t), 0 t x
(4.15) r ( x ,t;~ ) = ( ~ (A )  - - -

I —~—— U(x )V( t) , 0 ~ x ~ t ~ 1
~(x) 

- - -

provided , of course, that ~(A) ~ 0

Another expression for r(x,t;A ) can be obtained by making use of

the fact that the resolvent kernel of a synmietric kernel G(x,t) must also

be syimietric in x and t; that is , r(x,t;A) = r(t,x;A). This gives

(

I ~~~ U(t)V(x), 0 t x
(4.16) r(x,t;A ) ~(A) 1 

— — —

R(t,x;A) + U(t)V(x), 0 ~ x ~ t 
< 1

which , when compared with (4.15), yields

—12-



(4.17) ~(A )R(x ,t;~) U(t)V(x) — U(x)V(t), 0 ~ t ~ x ~ 1

an d f i n a l l y,

I ~~ U(t)V (x), 0 ~ t ~ x(4.18) r(x,t;A ) = 
~~ ~

(
~

) - — -

1 —1--- tj~x)V(t), 0~~~x~~~t~~~lI.... ~~
)

These results give rise to the following observations.

Remark 4.1. Equation (4.18) shows that if the resolvent kernel of

a symmetric simple separable kernel (4.1) exists , then it is also a synunetric

simple separable kernel .

Remark 4.2. The expression (4.18) for the resolvent kernel

r(x,t;A ) of G(x,t) can be obtained without finding the Volterra resolvent

kernel R(x ,t;x) of K(x,t) explicitly; one need only solve the Volterra

integra l equation (2.1) with f(x) = u(x) for y(x) = U(x), and the

transposed Volterra integral equation (2.5) with g(t) = v(t) for

z(t) = V(t)

Remark 4.3. An equivalent expression for the Fredholm determinant

~
(
~

) of G(x,t) is

1
(4.19) ~ ( A )  = 1 - xf V (x ) u (x ) dx

which can be obtained directly from (4.10) by interchange of the order of

integration and use of the definition (4.12) of V(t). It is easy to show

that the above expressions give expansions of ~(A) and N (x,t;A ) in

powers of A with coefficients satisfying the relationships (3.4) - (3.5)

[1 , 13]. The advantage of the present approach is that the rate of

-13-

— ~~~~~~~~~~~



V convergence of the series for A(A ), U(x) = U(x;A ), and V(t) = V(t;A )

can be predicted on the basis of (2.4) rather than (3.7).

Remark 4.4. The definitions of the Volterra kernel K(x ,t) and

its resol vent kernel R(x,t;~) extend to the entire square 0 ~ x~ t ~ 1 ,

with

(4.20) K(x,t) = 0, R (x ,t;A ) = 0, 0<  x t < 1

This will result in continuous kernels for u(x), v( t) continuous , as
K(x,x) = R (x ,x;A ) = 0, 0 ~ x ~ 1 . In terms of these extended kernel s,

one may write

( G(x,t) = K(x,t) + u( x )v( t)
(4.21) 1

~ r(x ,t;x) = R(x,t;A ) + — i-— U (x )V ( t)

Thus , the kernel G(x,t) given by (4.1) is the sum of the Volterra

kernel K(x,t) and the degenerate kernel u(x)v(t) of rank one. If

A (A ) 
~
‘ 0, then its resolvent kernel r(x,t;A ) exists and is also a

rank one modification of the Volterra resolvent kernel R(x,t;A) of

K(x,t). By symmetry, one also has

G(x,t) = K(t,x) + u(t)v(x)
(4.22)

(, r(x,t;x) R(t,x;x) + —~-— U(t)V(x)
- A(A )

In some applications , the expressions (4.21) or (4.22) for G(x,t) arise

more naturally than (4.1).

The next case to be examined Is that A = A* is an eigenvalue of

G(x,t); that Is , A(A *) 0 . Noting that U(x) = U(x;A) and

V(t) V(t;A ) depend on A , define

-14-
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U*(x) U(x;A *), 0 ~ x ~ 1

(4.23)
V*(t) = V(t;x*), 0 ~ t ~ 1

From (4.17), which can be extended easily to x = A *, it follows that

the functions tJ*(x) and V*(x) are linearl y dependent. Hence, for

A = A *, the Fredholm numerator N (x,t;A) of r(x,t;x) becomes

(4.24) N(x,t;A *) = czU*(x)V*(t)

where ~ ~ 0 is some constant. Thus, by (3.9) - (3.11), U*(x) will be

a right ei genfunction of G(x,t) corresponding to A~~, and V*(t) is a

corresponding left elgenfunction . As G(x,t) is symmetric , the distinction

between left and right eigenfunctions is inconsequential . However, it will

be shown later that a similar approach gives these as distinct functions in

the nonsymetric case.

The imp lications of the above results for the solvability of the

integra l equation (4.2) may be summed up in the fol lowing familiar language.

Theorem 4.1 (Fredhoim Alternative ]. If the transposed homogeneous

integral equation

1
(4.25) z(t) - xf z(x)G(x ,t)dx = 0, 0 ~ t ~ 10

has only the trivial solution z(t) = 0, 0 ~ t ~ 1 , then equation (4.2)

has the unique solution

(4.26) y(x) = F(x ) + 
A U(x) j v(t)F(t)dt, 0 ~ x ~ 1
~(A) ~ 

-

On the other hand , if (4.25) has the nontrivial solution z(t) = V*(t),

-15-
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then (4.2) has a solution only if f(x) is orthogpnal to V*(x), that

is ,

(4.27) f Vt(t)f(t)dt = 0

If (4.27) is satisfi ed , then (4.2) has the solutions

(4.28) y(x) F(x) + ~tJ*(x )

where ~ is arbitra ry, and y(x) = U*(x) is a nontrivial solution of

the homogeneous integral equation

(4.29) y(x) - Af G(x,t)y(t)dt = 0, 0 ~ x ~ 10

As derived above, of course, Theorem 4.1 applies only to simple

kernels (4.1). The same techni que, however, applies to general symmetric

separable kernels. Suppose that

n
~ u.(t)v.(x), 0 ~ t ~ x ~ 1

n j=1 3 ~ — -

(4.30) G(x ,t) = 
~~ G~(x,t) =j=l n

~ u.(x)v.(t), O~~ x~~ t~~ l
J=1 J

Then, the integra l equation (4.2) with the syninetric separable kernel

(4.30) may be reduced to

x n
(4.31) y(x) - A f K (x,t)y(t)dt = f(x) + A ) c. u.(x)

0 j 1 ‘~ ~~

where the numbers

-16-
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(4.32) c• = f v.(t)y(t)~t, j  1,2,... ,nJ

are to be determined , and K(x,t) is the Volterra kernel

n
(4.33) K(x,t) = )‘ [u (t)v.(x) - u.(x)v.(t)], 0 t ~ x ~ 1j=I •~ ~ J 3 - — —

As before, let R(x,t;A ) denote the Volterra resolvent kernel of K(x,t),

and def~~e

F(x) f(x) + ~J R(x ,t;A)f(t)dt
0

(4.34)

U1(x) = u.(x) + Af R(x ,t;A)u.(t)dt, I = 1 ,2,.. .,n1 0 1

Equation (4.31) is then equivalent to

n
(4.35) y(x) = F(x) + A ~ c1 U~(x)i =1

Multiplying (4.35) by v1 (x), v2(x), . . . ,  v1,(x) in turn and integrating

with respect to x from 0 to 1 gives the system of equations

n 1 1
(4.36) c. - A ~ c.f v1 (x)U.(x)dx 

= I v1 (x)F(x)dx , I = 1 ,2,... ,n1 j=1 ~~ 
3 0

for the unknowns c1, c2, .. . , ~ defined by (4.32).

Remark 4.5. It follows from (4.32), (4.35), and (4.36) that the

solution of the integral equation (4.2) with the syninetric separable kernel

(4.30) is equiva l ent to solving the Volterra integral equation (2.1) wi th

kernel (4.33) and right-hand sides f(x), u1 (x),..., un (x ) for

— 17—
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1(x), U1 (x),... , U,.~(x), forming the n2 + n coefficients of the system

(4.36), and then solving this system of n linear equatior~s for the n

unknowns c1, c2,... ,c0

It is also possible to obtain explicit expressions for the Fredholm

determinant ~~( A )  of G(x,t) and its resolvent kernel r(x ,t;A ) in terms

of the determinant and the inverse of the coefficient matrix of the system

(4.36). It will be convenient to introduce the functions

(4.37) v .( t )  = v 1 (t) + Af v1 (x ) R( x,t;A )dx, i = 1 ,2,.. .,n
t

which are the solutions of the transposed Vol terra integra l equations (2.5)

with right-hand sides v1(t), v2(t), ... V
n
(t) . Let the coefficients

(4.38) = I v~(x)U~(x)dx = f V 1 (t)u~(t)dt~ i ,j = 1 ,2,... ,n

define the n x n matrix A = ( cz j j ) . Then , the coefficient matrix of

the system (4.36) has the form

(4.39) I - AA (6
jj 

- Acz~~ )

where is the Kronecker delta (~s~ 
= 0 if i ,‘~ j ,  ~~ = 1), and

I = (
~~~) is the n n Identity matrix. If the determinant

(4.40) ~(A) det (I - xA)

does not vanish , then the inverse of the matrix I - AA exists , and •

may be written as

-18-
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1 1 (
~

. (A)
(4.41) (I - AA) = — B(A ) = 

ij
A(A) \ ~

(
~ )

by the use of Cramer ’s rule. In this case, the system (4.36) has the

unique solutions

= 

~~~ j~l 
B~j(A) I v~(x )F ( x )dx =

(4.42)

~~~~~~ 
~1~~(A ) f~ ~ (t)f(t)dt

for i = 1 ,2,... ,n . Thus , the integral equation (4.2) will have the

unique solution y(x) gi ven by (4.35), which may be written in the form

x
y(x) = f(x) + Af R(x ,t;A)f(t)dt +

0
(4.43)

n n 
~~~
. .(~ ) 1

+ A ~ U~(x) 
13 

~ 
V.(t)f(t)dt

i=l j=l 
~(A) 

0 ~

From (4.43), it is possible to derive several expressions for the

resolvent kernel r(x,t;A ) of the symmetric separable kernel G(x,t),

provided that the Fredholm determinant ~ (A )  of G(x ,t) i s nonz ero.
Extending the Volterra kernel K(x,t) and its resolven t kernel R(x ,t;A)
to the entire square 0 ~ x, t ~ 1 as before, one may wr ite

II

~

-19-
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n
G(x,t) = K(x,t) + ~ u.(x)v (t)

j=l ~
(4.44)

r(x,t;x) = R(x,t;A) + ~~~ 
~ ~ 

U1 (x)B 1~(x)V~(t)

Remark 4.6. The symmetric separable kernel (4.30) is a rank n

modification of the Volterra kernel (4.33). If ~ (A) ~ 0, the resolvent

kernel r(x,t;A ) is likewise a rank n modification of the Volterra

resolvent kernel R(x,t;A) of K(x,t)

Integra l operators corresponding to degenerate kernels of rank n

are sometimes called n-term dyads [6]. By symmetry,

n
G(x ,t) = K(t,x) + ~ u.(t)v.(x)

•j= 1 ~
(4.45)

n n
r(x,t;A) = R(t,x;A) + ~ U.1 (t)B~ .(A)V.(x)

ALA ) i= 1 j=1 ‘~

Comparison of (4.45) and (4.44) gives

n n
(4.46) ~(A)R(x ,t;A) = 

~ 81.(A)[U1 (t)V 4(x ) — U1 (x)V.(t)]1=1 j=l ~

and thus r(x,t;X) may also be written in the form

‘ n n B . (A )

~3 ii.(t)V (x ) , 0 < t ~ x ~ 1I i=l j=l A (A ) 1 j — —

(4.47) r(x ,t;x) =

n n B~4 (A )
~ U1 (x )V~(t). 0 ~ x ~ t ~ 1

~ 1=1 j~1 ~(x )

-20-
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Remark 4.7. If it exists , t rle Fredholm resolvent kernel

r(x ,t;~) of the symmetric separable kerne l (4.30) is likewise the sum of

n symmetric simple separable kernels.

For n > 1 , there are a number of ways in which the kernel (4.47)

may be written in the form (4.30). For example , definin~ the functions

n
= ~ U.(x)~ . .(

~ ), j = 1 ,2,... ,n
I ~ 1=1 1 13

(4.48)
I n
~~~~ ~~~.(t )  = ~ ~~~. .(~ )v. ( t ) ,  I = 1 ,2,... ,fl

j=l 13 3

one obtains the equivalent representations

~T~T j~l 
1f1~(t)V~(x). 0 t x < 1

(4.49) r(x ,t;~) = 
n

L ~T5T j~l 
‘v~(x ) V~(t)~ 0 x t 1

and

[ ~.ç1y U1 ( t)o 1 (x), 0 t x 1

(4.50) r(x ,t;A ) =

i...,. ~cb U1 (x)~1 (t), 0 x t

for the resolvent kernel of G(x,t).

Suppose now that A = A is an eigenvalue of the kernel (4.30),
*

that is , A ( A ) = 0. By the same method as used in the nonhomogeneous case,

the homogeneous equation (4.29) can be shown to be equiva lent to the system

-21-
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y(x) A 

~ 

c1U1 (x)

(4.51 )

L ~~1 
- A 

~~ 
~~~~ 

0, i = 1 ,2,... ,n

corresponding to F(x) = 0 in (4.35) and (4.36). As A ( A ) = 0, the

homogeneous system
*(4.52) (I - A A)c = 0

has rr ~ n linearly i ndependent solutions

/ /
(4.53) c~ = (c 1 ,c~ ~,. . . ,c~ ~) , k = 1 ,2,... ,m

Corresponding to these solutions , which are ri ght eigenvectors of the matrix

A = (~~~~~~~~~) corresponding to the reciprocal eigenva l ue .k
k
, one obtains m

linearly independent eigenfunctions

(4.54) y (x) = 

~ 
c~~~u~~x), k = 1,2,. ..,n

of the kernel G(x,t) corresponding to the eigenvalue x .  Similarl y,

the transposed homogeneous equation (4.25) for A = A has m linearl y

independent solutions

(4.55) 4( t )  = A 

~ 
d~~ V~(t), k = 1 ,2,... ,m

corresponding to the m linea rly independent solutions

(4.56) d(k) = ~~~~~~~~~ . ~~~~~~ k 1 ,2,... ,m

of the transposed homogeneous system

(4.57) d( I - A A )  0

that is ,

(4.58) d~ - A
* 

~ 
djc~jj 0, j 1 ,2 , . . .  ,fl
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It follows from (4.36) that the nonhomogeneous integra l equation (4.2)

will have no solutions unless the orthogonality conditions

n , 1 1 n / L~~ 
1 *

(4.59) ~ &‘. ‘f v.(x)F(x)dx = 
f ~ d~~’V~(t)f(t)dt = 5 Zk(t)f(t)dt = 0

j=l ‘~ 0 ~ 0 j=1 0

hold for k = l ,2,...,m; that is , the right-hand side of (4.2) must be

orthogonal to all solutions of the transposed homogeneous equation (4.25)

with A = A . If (4.59) holds , then (4.2) is satisfied by the family of

solutions

* 
x 

* 
In 

*(4.60) y(x) f(x) + A 5 R(x.t;A )f(t)dt + ~ 
y~y~(x)0 k=1

with 
~~~~~~~~~ ~~~ 

arbitrary .

The above results can be stated as the corresponding generalization

of the Fredhoim Al ternative Theorem to kernels (4.30) with n >1. Another

method fcr computing resolvent kernel s of separable kernels (symmetric

or not) will be indicated in a later section .
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5. ADD j cat ions to boun~~~y va1ue problerns . Syrrinetric se para b le kernels

appear frequently as Green ’ s func tions for two-point boundary value problems

for ordinary differential operators [17]. More precisely , suppose that

L[ ] is a linear ordinary differential opera tor, and a solution y(x)

of the differential equation

(5.1) L[y(x)] = h (x)

is soug ht which , together with its derivatives of lower order than the

order of L[ ], sat isfies giv en conditions at x = 0 and x = 1 . If

thi s boundary value p rob lem h~’. a un ique solution y(x) which can be

represented as

(5.2) y(x) = 5 G(x,t)h(t)dt
a

for all functions h(x) from some class such as continuous functions,

then G(x,t) is said to be the Green ’s funct ion for L[ ] correspond-

ing to the given bounda ry conditions. If

(5.3) h(x) = A y(x) + g(x)

then the boundary value problem for the differential equation (5.1) is

equivalent to the Fredholm integral equation

(5.4) * y (x) - A 5 G(x ,t)y(t)dt f(x), 0 ~ x0

where

(5.5) f(x) = f G(x,t)g(t)dt, 0 x ~ 1
0

Thus , the techniques of §4 apply to the solution of (5.4) i f G(x,t)

is a symmetric separable kernel , and to finding elgenvalues and eigen-

func tions in the homogeneous case g(x) 0.

-24-
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In many cases , i t i s possib le to proceed directl y from the

boundary value problem to representations for the Green ’s function , its

Fredholrn determinant , resolvent kernel , and eigenfunction s. For example,

consider the Sturm-Liouville opera tor [17)

(5.6) L[y(x)J = -(p(x)y ’(x))

wi th p(x) > 0, subject to the boundary conditions

ap(O)y ’(O~ + by(O) = 0
(5.7)

cp(l)y ’(l) + dy(l) = 0

A simple way to find the Green ’s function for this problem is

to start directly from the differential equation

(5.8) (p(x)y’(x)) = - h( x )

One integration gives

x
(5.9) p(x)y ’ ( x )  = p(0)y’ (O) - 5 h(t)dt

0

Dividing (5.9) by p(x) and integrating again yields

(5.10) y(x) y(0) + p(0)y’(O) dt 
- 1~ I ft~-~3 dtds

By defining

(5.11) - F( x) = 
cit

and noting that change of order of integration resul ts in

(5.12) ~ 

~f~
- dtds = 

( ( X  

~ 
h(t)dt = [F(x) - F(t))h(t)dt

one obtains

x
(5.13) y(x) = y(0) + p(O)y’(O)F(x) - f [F( x ) - F( t))h(t)dt

-25—
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from (5.10). The boundary conditions (5.7) wil l now be used to express

y(O) and p(O)y’(O) in terms of integral transforms of h (x). From

(5.9) and (5.13),

p(1)y’(l) = p(0)y’(O) - h(t)dt

(5.14)

~~y(l) y(0) + p(0)y’(O)F(l) - f [F(l) - F(tflh(t)dt .
0

Mul tiplying the first equation of (5.14) by c, the second by d and

adding the results gives

(5.15) 0 = dy(0)  + yp (O)y ’(O) - I [‘~ - dF(tflh(t)dt0

by the second of the boundary conditions (5.7), where

(5.16) = c + dF (1)

Now, mul tiplying (5.15) by a and using the fi rst boundary condition of

(5.7) results in

(5.17) 0 = (ad by)y(0) — I a[-r - dF(tflh(t)dt
0

or , if

(5.18)

then

1

(5.19) y(0) = f ~ - dF(t)]h(t)dt

Similarly, mu ltiplication of (5.15) by b and use of the first boundary

condition gives

-26- 
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(5.20) p(0)y’(O) = - f 
~~ 

{y - dF(t)]h(t)dt

Equations (5.19) and (5.20) may be substituted into (5.13) to obtain

x 1
(5.21) y(x) = - f [F(x) - F(tflh(t)dt + I [a - bF(x)][y -dF(tflh(t)dt .

0 ~~

Comparison of (5.21) with (5.2) gives the fol l owing resul ts.

Remark 5.1. If 6 ~ 0, then the Green ’s function G(x ,t) of

the Sturm-Liouville problem (5.6)-(5.7) is the rank one modification

(5.22) G(x,t) = K(x ,t) + u(x)v(t)

of the Volterra kernel

(5.23) K(x,t) = — [F(x) - F(t)], 0 ~ t ~ x ~ 1

with

(
u ( x )  = [a - bF(x)]

(5.24)

L v (t )  = - dF(t)

Remark 5.2. If ~ / 0, then the Green ’s function (5.22) is the

symmetric simple separable kernel

~~~~~~~~ 

[a - bF(t)][y - dF(x)], 0 ~ t x ~ 1
(5.25) G(x,t) =

~j[a-bF(x) ] [~~- dF(t)]~ 0 < x < t < l

This follows directly from (5.22)-(5.24) and the simple calculation

(5.26) [a - bF( x)][~ - dF(t)] - 6F(x) + oF(t) = [a - bF(t)][y -dF(x)]

Thus , the evaluation of the Fredholm determinant A (A ) of G(x t)

and the calculation of its resolvent kernel and eigenfunctions depends

only on being able to calculate the functions U(x),V(t) either in terms

of the Volterra resolvent kernel R(x,t;A ) of the kernel (5.23), or A

directly by solving the Volterra integral equations cited in Remark 4.2.
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For certain simple examples , it is possible to give explicit

formulas for these results. Taking p(x) 1 gives

(5.27) L[y(x)] = —y ”(x)

and hence

(5.28) F(x) = x, K(x ,t) = — (x - t )

from w hi ch

(5.29) R(x ,t;A ) = — 
sinJ~,~ 

- t)

The bounda ry conditions

(5.30) y(0) = 0, y’(l) = 0

correspond to (5.7) with a 0, b = 1 , c = 1 , d 0, and hence ~y 1 ,

= -1 , and thus

(5.31 ) u(x) = x, v(t) = 1

It follows that the Green ’s function G(x,t) for the differential operator

(5.27) with boundary conditions (5.30) is

(5.32) G(x,t) = -(x - t)~ + x

where (x - t)~ = 0 for 0 ~ x ~ t ~ 1 , or

It , O~~ t~~ x~ 1
(5.33) G(x ,t) ~Lx , 0~~ x~~~t~~ l .

Using (5.29) and (5.31). one obtains

(5.34) U(x) = , V(t) = cos/~(l - t)

from which the FredPolm determinant A (A ) of G(x,t) is seen to be

(5.35) A (A ) = cosv’r . •

If A (A ) ~ 0, then the resolvent kernel r(x,t;A ) of G(x,t) may be

written as

-28-
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- -  - - 

S i f l’ (A  - t)~ sinV~x cos /T(l - t)(5.36) • ( x ,t , ) - - - - 
~~~

- - -  - .  + - 

~‘r cos~
’

correspondin g to (5.32), or as the symmetric simple separable kernel

S1n~~T t cosvT (1 — x)
I 

- 

~T ~05,~r 
—--- — , 0 ~ t ~ x ~ 1

(5. 37) r(x , t ; )
s~11,T~ cos~T(1_ — t) 0~~~x~~~t~~~l

of the same for~i as (5.33). It also follows immediately from (5.35)

that the eigenvalues of G(x ,t ) are

(5.38 ) [(
2n j 1 

)
rr
] , n = 1 ,2 ,3,...

and the corresponding eigenfunctions are proportional to

(5.39 ) /~~~U* (x)  = sin k.2n ~~~ , n = 1 ,2,3 

It is also possible to write down explicit formulas for the more

genera l second-order boundary va lue problem

L[y(x)] =-y ” (x )

(5.40) ay ’ ( O )  + by(0) 0

L cy’(l) + dy(l) = 0

by the use of (5.24),  (5 .28),  and (5.29). The Green ’ s function G(x ,t)

is obtained from

( u(x) = ~
- [a - bx]

(5.41 ) ( (/

L. v(t) = c + d(l - t)

provided ~ = ad - b(c  + d) ~ 0, the resol vent kernel r(x ,t;A) of

G(x ,t) from

( U(x) ~
- [a cosv~ x - -)

~
. sin~’~x)

(5.42)
L V(t) = c cos,/~(l - t) + -,j~. sini~11 - t)
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and the Fredhoim determinant is

(5.43) A ( A )  = 
~ [(ad - bc)cos”~ - (acv’~ +

The eigenvalues of G(x,t) may thus be found by solving the simple

transcen dental equation

tanv’~~_ ad - bc
~5.44) 

- Aac + bd

for 
~l’ 2’”~ 

, and the results substituted into (5.42) to obtain the

corresponding ei genfunctions. To simplify these expressions, one may

introduce the angles

(5. 45) = •(A) = tan~ ~~ 
e = 9 ( A )  = tan~~ ~~~~~~~~~

which gives

U(x) = 
1

~~~~~~~ 2
(/~ 

+ ~
)

(5.46) ’
V( t )  = sin[~~(l - t) + ~

]

and

(5.47) A(~ ) = ~ V7a
2A + b2llc2 A + d2) cos(~~ + + a )

Thus ,

(cos (v’~t + ~)s inj~’~(l - x) ~~ ]L 0J /~cos(/r + + e) < t X

(5.48) r(x ,t;A ) = (

1 cos (v’~x + ,)sin[v’~(l - t) + 91 0I...- /X’cos(vT + + 0) ‘ ~ x ~

provided , of course , that A (A) $ 0.

From (5.47), the elgenva l ues A 1, A 2,... of ç must satisfy

(5.49) + ,(~
) + oLx~) 

= (2fl ~ 1 )
~ 

, n = 1 ,2,...
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c

or 

1 (ad - bc)~~ (
~ ~\(5.50) + cot ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =~~~

, 
~ )w .  n = 1 ,2,...

which is equivalent to (5.44).

The method given above extends readily to two-point boundary value

problem s of arbitra ry order. In general , the Volterra kernel K(x ,t) is

obtained by integrating (5.1) as an initial value problem with zero

initial conditi ons; for example , for

(5.51) L[y(x)] = _ylV (x)

one obtains

3
(5.52) K(x ,t) = - 

(x -t ) 
, 0 ~ ~ ~ 1

The functions u1 (x),.. . ,u~(x) and v1 (t),.. . ,v,~(t) which give the

Green ’s function G(x,t) as a finite rank modification of K(x ,t) are

then found by solving for the initial conditions , in terms of Integral

transforms of h(x) to satisfy the given boundary conditions , i t bei ng

assumed that the resulting system of equations has a unique solution. Of

course , only sel fad.joint boundary value problems give rise to symmetric

Green ’s functions. In the next section , nons ynm~etric separable kernel s
will be discussed.

For nonlinear boundary value problems,

(5.53) h(x) = f(x,y(x))

the use of the Green’s function G(x,t) leads to a Hammerstein Integral

~quat ion

(5.54) y(x) - f G(x,t)f(t,y(t))dt = 0
0
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If G( x ,t) is of the form (4.1), then (5.54) is equiva lent to the non-

li near sys tem

x
y (x) * f K(x ,t)f(t,y(t))dt czu(x)

I 0
(5.55)

a = f v(t)f(t,y(t))dt
0

The first equation of (5.55) is a nonlinear Vol terra integra l equation.

I f this can be solved for

(5.56) y(x) = y(x;ci)

then substitution into the second equation gives the single nonlinear

scalar equation

(5.57) a 5 v ( t ) f ( t ,y(t;ct))dt =
0

for a. In general , this procedure for solution cannot be carried out

expl icitly, as in the linear case, so various approximation methods,

usuall y based on iteration , have been studied for this problem. In

particular , it may happen that a = y’(O), in which case iterative

determination of a and hence y(x) is sometimes referred to as a

“shoot i ng” method [10). If G(x,t) is of the form (4.30), then a sim ilar

construction leads to a single nonlinear Vol terra integra l equation for

y(x) = y(x;cz1,. .. ,~~
) and the nonlinear scalar system

1
(5.58) a

~ 
= 5 v 1 (t)f(t,y(t;a1,... ~cz~))dt~ I = 1 ,2,... ,n
0

for a1,cz2,.. ~~~~~~ 
Further discussion of nonl inear boundary value problems

is outside the scope of this paper.
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6. T he non~ymmetric case. In certain problems , one may have to deal

with separable kernels which are not symmetric , such as finite linea r

cotibinat ions of kernels of the form r(x)G(x,t)w(t), where G(x ,t)

is a symmetric simple separable kernel (5.1). As a prototype of separable

kernels in the general case, consider the simple kernel

(u(t)v(x), 0 ~ t ~ x ~ 1(6.1) G(x,t) = 
— —

1~p(x)q(t), 0 ~ x ~ t ~ 1

subject to the condition

(6.2) u(x)v(x) = p(x)q(x), 0 ~ x ~ 1

which insures that the traces of G(x,t) and its associated kernels

are uniquely defined . Formulas will now be developed for the Fredholm

determinant A( A ) and the resolvent kernel r(x,t;A) of the simple

separable kernel (6.1). The general separable kernel , which is a finite

linear combination of kernels of the form (6.1), can then be handled by

the technique given In §4, or the method to be discussed in §7.

Writing the Fredholm integral equation (4.2) as the system

~ y ( x )  - A f K(x,t)y(t)dt = f(x) + Acp(x)
I 0

(6.3)

L. c = f q(t)y(t)dt
0

where

(6.4) K(x,t) = u( t)v(x ) - p(x )q(t)

one obtains as before

1 1
(6.5) ~(A ) = 1 — A 5 q(x)P(x)dx = 1 - A 5 Q(t)p(t)dt

0 0

with the functions P(x), Q(t) given by
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x
P(x )  = p (x) + A 5 R(x ,t;A )p(t)dt

I 0
(6.6) ç 1

Q(t) = q(t) + A 5 q(x)R(x ,t;A )dx
t

in terms of the Volterra resolvent kernel R(x,t;A) of K(x ,t). If

/ 0, then equation (4.2) has the uni que solut ion

(6.7) y(x) f(x) + f R(x ,t;~ )f(t)dt + ~~~ J 1 P(x) Q ( t)f( t ) dt

from which it follows tha t the Fredhoim resolvent kernel of the kernel (6.1) is

R(x ,t;A ) + 
P(x)~(~) 0 t x 1

(6.8) ~(x ,t;~.) =

P(x~Q~tI 0 < x ~~~t : 1 .

Alterna tively , one may write

y( x ) + A 5 K (x ,t)y(t)dt = f(x) + Xdv(x)
I x

(6.9) 1
d = f u(t)y(t)dt

L 0

This leads to the expressions

1 1
(6.10) A ( i )  = 1 - A f u(x)V(x)dx = 1 - A 5 lJ(t)v(t)dt

0 0

for the Fredholm determinant of G(x,t) in terms of the functions

V(x) = v(x) - A f R(x,t;A)v(t)dt

(6.11) S •

U(t ) u( t ) — A f u( x )R( x ,t;A)dx ,

jJj~~~ - 
-. - - - 
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and , if ‘(A) ~ 0, to the unique solution

1 1
(6. 12) y(x )  = f( x) - -

~ 
f R(x ,t;A )f(t)dt + __(

~
y I V(x)U(t)f(t)dt

x 0

of (4.2).  Thus ,

( U (t)V(x) 0 — - I
A ( A )  ‘ = 

t 
= 

x
(6.13) r (x ,t;~ ) =

(~R(x,t ;A ) + ~ t)’~(~ ) 
, 0 ~ x ~ t i

provided that the Fredhoim determinant does not vanish. In (6.ll)- (6.l3),

use is made of the extension of the function R(x ,t;~ ) def i ned by (2 .2)

to the triangle O x  :t ~. 1.

Comparison of (6.13) and (6.8) yields

(6 .14) ~(A )R(x, t;A ) = U(t)V(x) — P(x)Q(t), 0 x ,t 1

and finall y,

1U(t~V~x) O < t - x : l

(6.15) r(x ,t ;A )  =

~~ P(x ~Q~t) 
, 0~~~x < t : l

Theorem 6.1. If A(A ) ~ 0, then the simple separable kernel (6.15)

is the Fredholm resolvent kernel of the simpl e separable kernel (6.1).

If ~(A )  = 0, then it follows from (6.14) that

* * * *(6.16) U (t)V (x) = P (x )Q  (t )

where
* * * *U (t)  = U(t;A ), Q Ct )  = Q(t;A )

(6.17) * * * *V (x)  = V ( x ; A  ), P (x) = P(x;A )

are obta i ned from (6.6) and (6.11) with A A .  It follows from (6.16)

* *that V (x) and P (x) are linearly dependent, and either may be taken
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as a right eigenfunction of G(x .t) correspondfng to the ei genva lue
* * *similarly , U (t) and Q (t) are proportional and furnish a correspond-

ing left eigenfunction of the kernel (6.1).

Of course , the functions U(t), V(x), P(x), Q(t) may be found

by solving the appropriate Volterra integral equations if it is desired

to avoid the expl ic i t  computation of R(x ,t ; A ) .

- ---- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --•



7. An alternative c~~p~tational method. Suppose that G(x ,t ) is a

Fredhoim or Vo l terra kernel with known resolvent kernel i(x ,t;A ), and

-it is desired to construct the resolvent kernel rn (x.t;A ) of the modified

kernel

n
(7.1) G~(x~t ) = G(x ,t) + ) u .(x)v.(t)

j=l ~

In the special case that G(x.t) = K(x ,t) is a Volterra kernel , one fo rm

of the solution of this problem is given by (4.44), which requires the

i nvers i on of an n n mat rix . It i s also poss ib le to obta i n the resolvent

kernel by a step-by-step process similar to an elimination method for

matrix inversion. First of all , consi der the rank one modification

(7 .2) G 1 (x ,t) = G(x,t) + u1 (x )v 1 (t )

By applying the method of :4 (solving equation (4.2) with the kernel (7.2)),

one obta i ns

(7.3) ~1
(A ) = 1 — A 5 v 1 (x)U 1 (x)dx 

= 1 - A 5 V 1 (t)u1 (t) dt
0 0

for the Fredhoim determi nant of G1 (x ,t), where

U~(x) = u 1 (x) + A ~l r(x,t ;A )u 1 (t)dt

(7.4)
1L V 1 ( t )  = v1 (x ) + A 5 v 1 (x)r(x,t;A )dx0

‘ Theorem 7.1. If 
1
(A) ~ 0, then the resolvent kernel r1 (x ,t ;A )

of the rank one modification G1 (x ,t) of G(x ,t) is

U1 (x)V 1 (t)(7.5) r1 (x,t;A ) = r ( x,t;A ) + 
~~~ ( A )
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which is a rank one modification of the resolvent kernel :(x ,t; ).

Th is result has been exploited a number of times prev iousl y; ‘ee.

for example , (4.15), (4.16), (4.21), (4.22), (5.36), (6.8), and (6.13).

It is analogous to the Sherman-Morrison-Woodbury formula for finite

matrices [9, pp. 123-124]. Now , instead of (7.1), one may consider the

sequeflce of kernels

(G (x,t) G(x,t)
(7.6) ~

~ 
G~(x ,t) = G

k 1
(x ,t) + uk(x ) v k(t), k =

each of which is a rank one modifi cation of the previous kernel . Taking

(7.7) r
0

(x , t ; ~~ ) r (x ,t;~)

one may construct the corresponding sequence of resolvent kernels

Uk(X)Vk(t)(7.8) r
k

(x lt ,A) = rk l (x
~
t.A ) + 

~~~~~ 

, k = 1 ,2,... ,n

where

r Uk(x) 
= U

k
(X) + A 

~l 
rk l (x ,t;A )u k (t ) dt

(7. 9)

I Vk ( t ) vk(t) + A 5 vk ( x ) r k l (x .t;A)dx
‘5__ 0

and

1 1
(7.10) 8k(~

) = 1 - A 5 vk (x)U L.(x ) dx = 1 - A 5 V k ( t )uL (t)dt
0 0

and obtain [‘~ (x 1t;A). provided , of course, that

(7.11) A k(A) ~ 0, k = l ,2,...,n . 
‘
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8. Numer ical__impl icat ions. For a Fredholm integral equation with a

sepa rable kernel G(x,t), it has been shown that methods appropriate to

Volterra integ~-al equations can be used to obtain the Fredholm determinant ,

resolven t kernel , and eigenfunctions of G(x ,t). As better estimates are

ava ilable for convergence of the resulting expansions than in the genera l

Fredholm case , effective analytic or approximate computations can be carried

out. Al though explicit formulas can be obtained only for very simple

problems , it may be that the Volterra kernel K(x,t) is a polynomial or

other simple function of x and t, in which case a computer can be

programmed to find the coefficients in the expansion (2.2) of the resolvent

kernel K (x ,t;A ) to obtain any desired degree of accuracy . Eigenva l ues

of G(x ,t) can also be obtained by computing zeros of the entire function

~~~ Th is is a more difficult problem , but can once aga in be done w i th

any desired accuracy .

If the analytic or semi-analytic approach appea rs fruitless or

uneconom i cal , then strictly numerical methods based on numerica l integration

may be used . For the Volterra integra l equations considered , these lead

to l ower triangular systems of equations which can be solved quickly

and accura tely, even if large [14 ,15]. As numerical integration is usually

much more accurate than numerical differentiation , this technique offers

an alternative to finite-difference methods for two-point boundary value

problems for ordina ry differential operators .
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